Self-Stabilizing Pulse Synchronization Inspired by Biological Pacemaker Networks
نویسندگان
چکیده
We define the “Pulse Synchronization” problem that requires nodes to achieve tight synchronization of regular pulse events, in the settings of distributed computing systems. Pulse-coupled synchronization is a phenomenon displayed by a large variety of biological systems, typically overcoming a high level of noise. Inspired by such biological models, a robust and self-stabilizing pulse synchronization algorithm for distributed computer systems is presented. The algorithm attains near optimal synchronization tightness while tolerating up to a third of the nodes exhibiting Byzantine behavior concurrently. We propose that pulse synchronization algorithms can be suitable for a variety of distributed tasks that require tight synchronization but which can tolerate a bound variation in the regularity of the synchronized pulse invocations.
منابع مشابه
Secure and Self-stabilizing Clock Synchronization in Sensor Networks
In sensor networks, correct clocks have arbitrary starting offsets and nondeterministic fluctuating skews. We consider an adversary that aims at tampering with the clock synchronization by intercepting messages, replaying intercepted messages (after the adversary’s choice of delay), and capturing nodes (i.e., revealing their secret keys and impersonating them). We present the first self-stabili...
متن کاملSelf-stabilizing Byzantine Pulse and Clock Synchronization
This thesis presents a scheme that achieves self-stabilizing Byzantine digital clock synchronization assuming a “synchronous” system. This synchronous system is established by the assumption of a common external “beat” delivered with a regularity in the order of the network message delay, thus enabling the nodes to execute in lock-step. The system can be subjected to severe transient failures w...
متن کاملSelf-Stabilizing Byzantine Pulse Synchronization
We present a distributed pulse synchronization algorithm, which targets at invoking regular and tightly synchronized pulses. Designing algorithms that self-stabilize while at the same time tolerating an eventual fraction of permanent Byzantine failures present a special challenge due to the ambition of malicious nodes to hamper stabilization if the systems tries to recover from a corrupted stat...
متن کاملA Byzantine-Fault Tolerant Self-stabilizing Protocol for Distributed Clock Synchronization Systems
Embedded distributed systems have become an integral part of safetycritical computing applications, necessitating system designs that incorporate fault tolerant clock synchronization in order to achieve ultra-reliable assurance levels. Many efficient clock synchronization protocols do not, however, address Byzantine failures, and most protocols that do tolerate Byzantine failures do not self-st...
متن کاملLinear Time Byzantine Self-Stabilizing Clock Synchronization
Awareness of the need for robustness in distributed systems increases as distributed systems become an integral part of day-to-day systems. Tolerating Byzantine faults and possessing self-stabilizing features are sensible and important requirements of distributed systems in general, and of a fundamental task such as clock synchronization in particular. There are efficient solutions for Byzantin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003